Utilising OME-NGFF to achieve scalable cloud-based analysis with CellProfiler

David R Stirling¹, Mina Gheiratmand¹, Chris MacLeod¹, Emil Rozbicki¹, Jason Swedlow^{1,2}

¹Glencoe Software Inc., Seattle, WA, USA ²The Open Microscopy Environment, University of Dundee, Dundee, UK

Background

- Scientists routinely capture large, multi-dimensional datasets containing millions of images.
- Competing and frequently proprietary storage formats have been developed to handle this data.
- Existing formats are typically designed for use with local storage.
- Datasets can now exceed the capacity of local storage.

The **CellProfiler OME-NGFF reader** was implemented on a fork of the main repository (Broad Institute). The reader was developed for CellProfiler 4.2.1 (Python 3.8), using the zarr and fsspec libraries. Prebuilt binaries with this reader are available at:

https://github.com/glencoesoftware/CellProfiler/releases

Testing

- Performed local and cloud-based CellProfiler runs on
- Why is loading S3 bucket data slower on a cluster than on a local machine??
- Cluster workflows treat each image set as an independent CellProfiler run.
- CellProfiler process is restarted after each image set.
- This approach provides **resilience** against errors

- Elastic cloud-based storage can handle large bioimage datasets.
- Individual files per image or per tile are convenient for accessing single frames but lack contextual metadata.

OME-NGFF

Open Microscopy Environment's Next-Generation File Format [1]

Open, vendor agnostic and domain agnostic format providing chunked, compressed, multi-dimensional data storage layout. Suitable for the local, network or cloudbased storage including **object storage** (Amazon S3, Azure Blob, etc.).

CellProfiler

Open-source image analysis software maintained by the Broad Institute [2]. Uses modular pipelines to analyse

3456 image sets from BBBC022.

- Same data in TIFF and OME-NGFF format stored on a local disk and in AWS S3 object storage.
- Reader performance evaluated based on LoadData module execution time.
- AWS Batch execution orchestrated by OMERO-CellProfiler Connector.

Results

Local CellProfiler execution

Setup: Workstation outside of AWS infrastructure with 16 CPUs and 32GB RAM. Copy of the test data stored on the local hard drive and AWS S3 storage.

CPU Time: A measure of computational workload (excludes I/O) *Wall Time*: Total execution time as seen by the user

encountered during analysis.

• Restarting the process requires that image readers are **re-initialized** for each job.

Figure 3: Execution times for TIFF and OME-NGFF data in a cluster computing environment. Analysis runs were performed with different batch sizes. Results are broken down into image sets which were the first to be analysed within a given execution vs subsequent image sets.

 The first image set in a batch was prone to slower performance (Figure 3).

image datasets, including high content screening datasets.

OMERO Plus

Enterprise image database for scientific images and associated metadata. Supports more than 150 bio-image formats and together with OME-NGFF provides first truly cloud native image data management solution.

OMERO-CellProfiler Connector

Proprietary Glencoe Software tool for execution of CellProfiler pipelines remotely via OMERO clients. Supports various HPC systems including: SGE, PBS, LSF and SLURM and cloud deployment via AWS Batch.

Aim

Evaluate suitability and performance of the OME-NGFF format for the HCS local and cloud-based image processing and analysis.

Methods

TIFF files from the public dataset **BBBC022** were converted to OME-NGFF format with **NGFF-Converter**. NGFF-Converter is Glencoe's open-source interface for the bioformats2raw and raw2ometiff packages which can generate OME-NGFF datasets from most bioimage formats. Since NGFF-Converter

0.0 -			0.0
	Local	S3 Bucket	Local S3 Bucket
	Storage Type		Storage Type

Figure 1: Comparison of LoadData module execution time when using Bio-Formats (TIFF) vs the OME-NGFF reader. Displayed data represents a random sampling of 100 image sets from the analysis run.

- Loading data from OME-NGFF provided a substantial performance advantage in all conditions (Figure 1).
- CPU time required to load the data was similar between local and S3 storage.

Cloud-based CellProfiler execution

Setup: AWS Batch infrastructure with the maximum of 256 vCPUs was used to analyse data stored in AWS object storage (S3 storage). OMERO-CellProfiler Connector was used to orchestrate the analysis with variable batch sizes (image sets per job).

Figure 4: Comparison of LoadData execution time on AWS when using Bio-Formats (TIFF) vs the OME-NGFF reader, broken down by batch size. Data represents a random sampling of 100 image sets from the analysis run per batch size.

- Increasing batch size improved performance in both CPU and Wall time (Figure 4).
- OMERO-CellProfiler Connector can automatically adjust batch size to suit each dataset.
- OME-NGFF format maintained performance а advantage across all conditions.

Conclusions

- OME-NGFF can improve analysis performance when using CellProfiler both at the local and cluster level.

Figure 2: LoadData execution times for TIFF and OME-NGFF data when analysed in a cluster computing environment. Each node was assigned a single image set to analyse for each CellProfiler job. Results represent all 3456 image sets (1 CellProfiler job per image set).

- Similar performance advantage using the OME-NGFF format (Figure 2) on a computing cluster.
- Wall Time required for each image set was more variable than when running on a local machine.

- Batch size plays an important role in determining the overall efficiency of data I/O operations within a pipeline.
 - O Implications for configuration of existing cluster workflows such as Distributed-CellProfiler.
 - o Can be resolved using automated batching such as in OMERO-CellProfiler Connector.
- CellProfiler 5 will introduce support for modular image readers.
- **Future work**: integrate the OME-NGFF reader into the main CellProfiler repository.

References

1 - Moore, J., Allan, C., Besson, S. *et al.* OME-NGFF: a next-generation file format for expanding bioimaging data-access strategies. Nat Methods 18, 1496–1498 (2021).

2 - Stirling, D.R., Swain-Bowden, M.J., Lucas, A.M. *et al.* CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021)