
We evaluated the performance and user experience of the
above data retrieval operations for three use cases: cell
segmentation of highly multiplexed fluorescence whole slide
images, cell segmentation of Cell Painting HCS datasets, and
spatial transcriptomics datasets.

● Omero2pandas and OMERO.tables enable remote retrieval
of tabular data, including support for querying for selective
data retrieval.

● New technologies for the backend data storage for
OMERO.tables were evaluated for improvements in this
query performance. TileDB was selected for comparison
with the existing backend of PyTables.

Finally, we demonstrate a practical example for
dimensionality reduction on a table detailing millions of
objects with hundreds of features, including tools for the
visualization and mining of these results.

Advances in multimodal image data management in OMERO Plus:
connecting tissues, cells, sequences, and features

Erin E Diel, David R Stirling, Emil Rozbicki, Chris Allan
Glencoe Software Inc., Seattle, WA, USA

• OMERO Plus, together with OMERO.tables, supports
images and analytics from across diverse domains.

• The omero2pandas package seamlessly integrates the
OMERO Plus data management platform with popular
Python AI tools.

• Added support for OMERO.tables queries enables
researchers to perform more advanced data filtering when
requesting data with omero2pandas, easing and speeding
up downstream analysis.

• Integrated applications, such as PathViewer and Pageant,
enable remote visualization of complex data, supporting
diverse research and clinical workflows.

• Dedicated data management for analytical results in a
multiuser collaborative environment fosters improved
sharing and accessibility of data among researchers.

Next steps:

• Integrate the improved backend performance of TileDB
into OMERO.tables to improve scalability and efficiency,
especially when handling large datasets.

Background

omero2pandas

Conclusions

Alternative OMERO.tables Backend

Omero2pandas is an open-source Python library designed to 
streamline data retrieval and storage by converting 
OMERO.tables to Pandas DataFrames and vice versa. This 
will assist in analyzing data stored on OMERO with the 
scientific Python stack. 

Key features:

• Load OMERO.tables to DataFrame remotely

• Download the table for local use

• Upload a results table to OMERO

• Retrieve a list of columns from a remote table.

• Read specific rows and/or columns

• Support for custom queries NEW!

Unsupervised clustering of segmented nuclei in multiplexed 
fluorescence images was performed using the features stored 
within OMERO.tables with omero2pandas.

Strongly correlated features from the OMERO Segmentation 
Connector were removed using Spearman correlation, and 
dimensionality reduction was performed using UMAP. An 
unsupervised clustering model (Birch) was built to classify the 
cells.

Clustering results saved back to OMERO.tables can be 
visualized using PathViewer and Pageant (not shown).

Jupyter Notebook available at:
www.github.com/glencoesoftware/webinar-notebooks

Use Case: Nuclear Classification

Figure 8: UMAP clustering of objects (left), identifying 5 primary clusters. (Right)
original image with objects colored according to cluster identity, revealing relative
localization of objects from different clusters.

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4

● OMERO Plus is an image data management platform
designed for storage and analysis of bioimaging data and
metadata.

● Backed by the Bio-Formats library, OMERO Plus can
natively store and retrieve image formats arising from a
wide variety of microscopy hardware, from high content
screening (HCS) systems to spatial transcriptomics
platforms.

● Metadata can range from simple annotation tags to rich
tables describing per-object (cells, nuclei, spots, and other
structures) features.

Together, this allows for large and complex image datasets
and associated sequencing, segmentation, or other
analytical results to be both stored and retrieved remotely.

The utility of this system is enhanced by closer integration
with existing data science tools for processing stored data
and optimized performance of remote data retrieval.

● To provide a more convenient method for working with
tabular data in OMERO Plus (OMERO.tables) from Python
environments, Glencoe Software released the open source
omero2pandas package. This provides access to the full
suite of Python data science and machine learning
packages when working with OMERO data.

omero2pandas is another step towards making OMERO Plus
the data engine of choice for data analytics and AI in
bioimaging.

Aims

A multiplexed fluorescence image (19 biomarkers, 13 x 9 mm, 
20x magnification) of tonsil tissue was segmented using 
Glencoe’s OMERO Segmentation Connector. The process 
identified 1.2 million objects and calculated more than 300 
features describing each object. The image was acquired on 
RareCyte’s Orion Platform and stored on OMERO Plus.
Segmentation label image viewed in Glencoe’s PathViewer. 
OMERO.tables data visualized in Glencoe’s Pageant.

Use Case: Nuclear Segmentation

Figure 2: Table
displayed in Pageant
showing the features
calculated by the
OMERO Segmentation
Connector for the
objects segmented with
a StarDist model. Each
row represents one
nucleus.

Figure 1: Left: Original image showing nuclear stain (Hoechst). Right: White rectangle
region in the left panel showing segmentation results from the StarDist segmenter
executed with Glencoe’s OMERO Segmentation Connector. Objects are colored by
their area.

Whole transcriptome sequencing results were populated in 
OMERO.tables. Reference data was obtained from public 
datasets from 10x Genomics’ Visium platform.
Rows of the table represent individual 55 µm spots across the 
tissue (~14k), while columns represent genes or clustering 
results (hundreds to ~20k).
Spotted heat maps can be visualized overlaid with the image
in Glencoe’s PathViewer. OMERO.tables data is visualized in
Glencoe’s Pageant.

Use Case: Spatial Transcriptomics

Figure 4: Table displayed in Pageant showing the features output from the Visium
platform. Each row represents one spot, and each column represents a gene.

Figure 3: An H&E reference image overlaid with 55 µm spots color coded by cluster ID
in PathViewer

A JUMP pilot dataset (cpg0000) representing perturbation 
conditions and cell types was imported into OMERO Plus 
along with experimental metadata and used as the input to a 
CellProfiler pipeline. 384 rows, thousands of columns
Aggregation, normalization and feature selection were 
performed by PyCytominer to generate well-averaged single 
cell profiles, which serve as the input for perturbation 
profiles.
OMERO.tables data is visualized as a plate map in Glencoe’s 
Parade Plus.

Use Case: Cell Painting

Figure 5: A plate visualized in OMERO Parade Plus with feature heatmap overlaid.

OMERO.tables is typically backed by PyTables, which uses a 
row-major order format. This tabular backend is therefore 
fundamentally limited in its support for feature-based 
(column) queries and results.
In contrast, TileDB supports column-major order and chunked 
data storage, which improves data query and read speeds.

Figure 7: Column-major order in TileDB significantly improves the speed of data
retrieval from remote tabular datasets when compared with OMERO.tables/PyTables.
Visium data in OMERO.tables was smaller due to current column count limitations, so
relative improvements are likely even greater.

Query support in omero2pandas
The addition of support for custom queries in OMERO.tables
data retrieval with omero2pandas enables significantly faster 
selective data access.

Figure 6: Examples of the timings to read the entire OMERO.table or select row(s)
compared to remote CSV with pandas.read_csv().

http://www.github.com/glencoesoftware/webinar-notebooks

